Attracting Lagrangian coherent structures on Riemannian manifolds
نویسندگان
چکیده
منابع مشابه
Attracting Lagrangian coherent structures on Riemannian manifolds.
It is a wide-spread convention to identify repelling Lagrangian Coherent Structures (LCSs) with ridges of the forward finite-time Lyapunov exponent (FTLE) field and to identify attracting LCSs with ridges of the backward FTLE. However, we show that, in two-dimensional incompressible flows, also attracting LCSs appear as ridges of the forward FTLE field. This raises the issue of the characteriza...
متن کاملTracking Attracting Lagrangian Coherent Structures in Flows
This paper presents a collaborative control strategy designed to enable a team of robots to track attracting Lagrangian coherent structures (LCS) and unstable manifolds in two-dimensional flows. Tracking LCS in dynamical systems is important for many applications such as planning energy optimal paths in the ocean and predicting various physical and biological processes in the ocean. Similar to ...
متن کاملA dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds
Transport and mixing in dynamical systems are important properties for many physical, chemical, biological, and engineering processes. The detection of transport barriers for dynamics with general time dependence is a difficult, but important problem, because such barriers control how rapidly different parts of phase space (which might correspond to different chemical or biological agents) inte...
متن کاملAttracting and repelling Lagrangian coherent structures from a single computation.
Hyperbolic Lagrangian Coherent Structures (LCSs) are locally most repelling or most attracting material surfaces in a finite-time dynamical system. To identify both types of hyperbolic LCSs at the same time instance, the standard practice has been to compute repelling LCSs from future data and attracting LCSs from past data. This approach tacitly assumes that coherent structures in the flow are...
متن کاملMetallic Structures on Riemannian Manifolds
Our aim in this paper is to focus on some applications in differential geometry of the metallic means family (a generalization of the golden mean) and generalized Fibonacci sequences, using a class of polynomial structures defined on Riemannian manifolds. We search for properties of the induced structure on a submanifold by metallic Riemannian structures and we find a necessary and sufficient c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science
سال: 2015
ISSN: 1054-1500,1089-7682
DOI: 10.1063/1.4928451